Frequently used symbols

Frequently used symbols#

Symbol

Meaning

\(\varepsilon\)

epsilon

\(\delta\)

delta

\(\subseteq\)

subset of

\(\in\)

element of

\(\notin\)

not an element of

\(\forall\)

for all

\(\exists\)

there exists

s.t.

such that

\(:=\)

defined to be equal to

\(\mathbb{N} := \{1,2,\ldots\}\)

the natural numbers

\(\mathbb{N}_0 := \mathbb{N}\cup\{0\}\)

the non-negative integers

\(\mathbb{Z} := \{0,\pm 1,\pm 2,...\}\)

the integers

\(\mathbb{Q} := \left\{\frac{p}{q}:p\in\mathbb{Z},q\in\mathbb{N}\right\}\)

the rationals

\(\mathbb{R}\)

the reals

\(f:X\to\mathbb{R}\)

a function \(f\) from \(X\) to \(\mathbb{R}\)

\(x\mapsto f(x)\)

\(x\) maps to \(f(x)\)

\(\text{Dom}(f)\)

domain of \(f\)

\(\text{Range}(f)\)

range of \(f\)

\([a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}\)

closed interval from \(a\) to \(b\)

\((a,b):=\{x\in\mathbb{R}:a<x<b\}\)

open interval from \(a\) to \(b\)

\([a,b)\) and \((a,b]\)

half-open intervals

\(\mathbb{1}_S\)

indicator function for a set \(S\subseteq\mathbb{R}\). See Example 2.4

\(U(f,P)\)

upper sum of \(f\) with respect to \(P\). See Definition 6.1

\(L(f,P)\)

lower sum of \(f\) with respect to \(P\). See Definition 6.1

\(U(f)\)

upper (Riemann) integral of \(f\). See Definition 6.3

\(L(f)\)

lower (Riemann) integral of \(f\). See Definition 6.3